skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kalantari, Nima Khademi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, novel view synthesis from a single image has seen significant progress thanks to the rapid advancements in 3D scene representation and image inpainting techniques. While the current approaches are able to synthesize geometrically consistent novel views, they often do not handle the view-dependent effects properly. Specifically, the highlights in their synthesized images usually appear to be glued to the surfaces, making the novel views unrealistic. To address this major problem, we make a key observation that the process of synthesizing novel views requires changing the shading of the pixels based on the novel camera, and moving them to appropriate locations. Therefore, we propose to split the view synthesis process into two independent tasks of pixel reshading and relocation. During the reshading process, we take the single image as the input and adjust its shading based on the novel camera. This reshaded image is then used as the input to an existing view synthesis method to relocate the pixels and produce the final novel view image. We propose to use a neural network to perform reshading and generate a large set of synthetic input-reshaded pairs to train our network. We demonstrate that our approach produces plausible novel view images with realistic moving highlights on a variety of real world scenes. 
    more » « less
  2. We propose a simple and practical approach for incorporating the effects of muscle inertia, which has been ignored by previous musculoskeletal simulators in both graphics and biomechanics. We approximate the inertia of the muscle by assuming that muscle mass is distributed along the centerline of the muscle. We express the motion of the musculotendons in terms of the motion of the skeletal joints using a chain of Jacobians, so that at the top level, only the reduced degrees of freedom of the skeleton are used to completely drive both bones and musculotendons. Our approach can handle all commonly used musculotendon path types, including those with multiple path points and wrapping surfaces. For muscle paths involving wrapping surfaces, we use neural networks to model the Jacobians, trained using existing wrapping surface libraries, which allows us to effectively handle the Jacobian discontinuities that occur when musculotendon paths collide with wrapping surfaces. We demonstrate support for higher-order time integrators, complex joints, inverse dynamics, Hill-type muscle models, and differentiability. In the limit, as the muscle mass is reduced to zero, our approach gracefully degrades to traditional simulators without support for muscle inertia. Finally, it is possible to mix and match inertial and non-inertial musculotendons, depending on the application. 
    more » « less
  3. null (Ed.)